PRODUCT MONOGRAPH

KETOROLAC
Ketorolac Tromethamine Ophthalmic Solution 0.5% w/v
with benzalkonium chloride 0.01% w/v as preservative

Topical Non-Steroidal Anti-Inflammatory Agent

AA PHARMA INC.
1165 Creditstone Road, Unit #1
Vaughan, Ontario
L4K 4N7

Control No.: 183664

DATE OF REVISION:
June 16, 2015
Table of Contents

PART I: HEALTH PROFESSIONAL INFORMATION

- SUMMARY PRODUCT INFORMATION .. 3
- INDICATIONS AND CLINICAL USE ... 3
- CONTRAINDICATIONS ... 3
- WARNINGS AND PRECAUTIONS ... 4
- ADVERSE REACTIONS ... 5
- DRUG INTERACTIONS ... 7
- DOSAGE AND ADMINISTRATION .. 7
- OVERDOSAGE .. 8
- ACTION AND CLINICAL PHARMACOLOGY 8
- STORAGE AND STABILITY ... 9
- DOSAGE FORMS, COMPOSITION AND PACKAGING 9

PART II: SCIENTIFIC INFORMATION

- PHARMACEUTICAL INFORMATION .. 11
- CLINICAL TRIALS .. 11
- DETAILED PHARMACOLOGY ... 11
- TOXICOLOGY .. 15
- REFERENCES .. 16

PART III: CONSUMER INFORMATION

... 17
KETOROLAC
Ketorolac Tromethamine Ophthalmic Solution 0.5% w/v
with benzalkonium chloride 0.01% w/v as preservative

PART I: HEALTH PROFESSIONAL INFORMATION

SUMMARY PRODUCT INFORMATION

<table>
<thead>
<tr>
<th>Route of Administration</th>
<th>Dosage Form/Strength</th>
<th>All Nonmedicinal Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ophthalmic</td>
<td>Solution, ketorolac tromethamine, 0.5% w/v</td>
<td>Benzalkonium chloride 0.01% w/v as preservative, edetate disodium, octoxynol 40, sodium chloride, sodium hydroxide or hydrochloric acid solution to adjust pH, and water for injection.</td>
</tr>
</tbody>
</table>

INDICATIONS AND CLINICAL USE

KETOROLAC (ketorolac tromethamine) ophthalmic solution 0.5% is indicated for the prophylaxis and the relief of post-operative ocular inflammation in patients undergoing cataract extraction with or without implantation of an intraocular lens.

Pediatrics (< 18 years of age):

Safety and effectiveness of ketorolac tromethamine ophthalmic solution in pediatric patients below the age of 18 has not been established.

Geriatrics (>65 years of age):

No overall differences in safety or effectiveness have been observed between elderly and younger patients.

CONTRAINDICATIONS

KETOROLAC ophthalmic solution 0.5% is contraindicated in patients who are hypersensitive to this drug or to any ingredient in the formulation or component of the container. For a complete listing, see the Dosage Forms, Composition and Packaging section of the product monograph.
WARNINGS AND PRECAUTIONS

General

There have been post-marketing reports of bronchospasm or exacerbation of asthma, in patients, who have either a known hypersensitivity to acetylsalicylic acid/non-steroidal anti-inflammatory drugs (NSAIDs) or a past medical history of asthma, associated with the use of ketorolac tromethamine ophthalmic solution, which may be contributory. Caution is recommended in the use of ketorolac tromethamine ophthalmic solution in these individuals.

Carcinogenesis and Mutagenesis

Long-term studies in mice and rats have shown no evidence of carcinogenicity, teratogenicity, or impairment of fertility, with ketorolac tromethamine. No mutagenic potential of ketorolac was found in the Ames bacterial or the micronucleus test for mutagenicity.

Hematologic

With some NSAIDs, there exists the potential for increased bleeding time due to interference with thrombocyte aggregation. There have been reports that ocularly applied NSAIDs may cause increased bleeding of ocular tissues (including hyphemas) in conjunction with ocular surgery.

Occupational Hazards

Based on the pharmacodynamic profile, ketorolac is not expected to influence a patient’s ability to drive or operate machinery. As with any ocular medication, if transient blurred vision occurs at instillation, the patient should wait until the vision clears before driving or using machinery.

Ophthalmologic

All topical NSAIDs may slow or delay wound healing. Concomitant use of topical NSAIDs and topical steroids may increase the potential for healing problems.

Post-marketing experiences suggest that topical NSAIDs used by patients with complicated ocular surgeries, corneal denervation, corneal epithelial defects, diabetes mellitus, ocular surface disease (e.g., dry eye syndrome), rheumatoid arthritis, or repeat ocular surgeries within a short period of time may be at an increased risk of corneal adverse events which may become sight threatening. These adverse events may include keratitis, epithelial breakdown, corneal thinning, corneal erosion, corneal ulceration or corneal perforation. Patients with evidence of corneal epithelial breakdown should immediately discontinue use of topical NSAIDs and should be closely monitored for corneal health. It is also suggested that if used more than 24 hours prior to surgery or used beyond 14 days post-surgery, the patient risk for the occurrence and severity of corneal adverse events increases.

Blurred and/or diminished vision has been reported with the use of ketorolac tromethamine ophthalmic solution and other NSAIDs. These symptoms should diminish over time. However, if they persist, this drug should be discontinued and an ophthalmic examination should be performed.

Ketorolac tromethamine ophthalmic solution should not be administered while wearing contact lens(es).
Contact lenses should be removed prior to instillation of ketorolac tromethamine ophthalmic solution, and may be re-inserted 15 minutes following administration. Patients should be advised that ketorolac tromethamine ophthalmic solution contains benzalkonium chloride, which may discolour soft contact lenses.

Peri-Operative Considerations

It is recommended that ketorolac tromethamine ophthalmic solution be used with caution in surgical patients with known bleeding tendencies or who are receiving other medications which may prolong bleeding time.

Respiratory

There have been post-marketing reports of bronchospasm or exacerbation of asthma in patients, who have either a known hypersensitivity to acetylsalicylic acid/NSAIDs or a past medical history of asthma associated with the use of ketorolac tromethamine ophthalmic solution, which may be contributory. Caution is recommended in the use of ketorolac tromethamine ophthalmic solution in these individuals (Refer to Post-Market Adverse Drug Reactions section).

Special Populations

Pregnant Women: Use of ketorolac tromethamine ophthalmic solution is not recommended during pregnancy, labour or delivery due to no adequate and well controlled studies.

Because of the known effects of prostaglandin-inhibiting drugs on the fetal cardiovascular system of rats (closure of the ductus arteriosus), the use of ketorolac tromethamine ophthalmic solution during late pregnancy should be avoided.

Nursing Women: Ketorolac tromethamine ophthalmic solution is not recommended for treatment of nursing mothers. Secretion of ketorolac tromethamine in human milk after systemic administration is limited. The milk-to-plasma ratio of ketorolac tromethamine concentrations ranged between 0.015 and 0.037 in a study of 10 women.

Pediatrics (< 18 years of age):
Safety and effectiveness of ketorolac tromethamine ophthalmic solution in pediatric patients below the age of 18 has not been established.

Geriatrics (>65 years of age): No overall differences in safety or effectiveness have been observed between elderly and younger patients.

ADVERSE REACTIONS

Clinical Trial Adverse Drug Reactions

Because clinical trials are conducted under very specific conditions, the adverse reaction rates observed in the clinical trials may not reflect the rates observed in practice and should not be compared to the rates in the clinical trials of another drug. Adverse drug reaction information from clinical trials is useful for identifying drug-related adverse events and for approximating rates.
Since other NSAIDs have been known to irritate the eye upon topical application, ketorolac tromethamine was studied for its ocular irritation potential in animals and man.

In two multi-dose studies in healthy volunteers, one drop of 0.5% ketorolac tromethamine ophthalmic solution was applied three times daily for 21 days. Mild to moderate transient ocular burning/stinging was reported. Most ocular complaints reported in clinical studies with ketorolac tromethamine ophthalmic solution 0.5% could not be distinguished from adverse events caused by the trauma of cataract surgery and the insertion of an intraocular lens.

Up to two drops (0.1 mL or 0.5 mg) of 0.5% ketorolac tromethamine ophthalmic solution per eye every 6 to 8 hours have been administered post-surgically.

The most frequent adverse reactions in patients using ketorolac tromethamine ophthalmic solution 0.5% were conjunctivitis (redness, scratchiness, foreign body sensation, 10%), eye pain (pain, ache and burn, 6%), ptosis (5%) and keratitis (corneal edema, 3%). Iritis, corneal lesion, eye disorder, photophobia, pupillary disorder, blepharitis and elevated intraocular pressure were each reported with a prevalence of 2%.

None of the typical adverse reactions reported with the systemic non-steroidal anti-inflammatory agents or ketorolac tromethamine have been observed at the doses used in topical ophthalmic therapy.

Less Common Clinical Trial Adverse Drug Reactions (<1%)
Eye disorders: conjunctival hyperaemia (NOS), corneal infiltrates, edema eye, irritation
Gastrointestinal: nausea, vomiting

Post-Market Adverse Drug Reactions

The following adverse reactions have been identified during post-marketing use of ketorolac tromethamine ophthalmic solution 0.5%. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Eye disorders: eye irritation and ulcerative keratitis
Respiratory disorders: bronchospasm or exacerbation of asthma

You can report any suspected adverse reactions associated with the use of health products to the Canada Vigilance Program by one of the following 3 ways:

Report online at www.healthcanada.gc.ca/medeffect
Call toll-free at 1-866-234-2345
Complete a Canada Vigilance Reporting Form and:
- Fax toll-free to 1-866-678-6789, or
- Mail to: Canada Vigilance Program
 Health Canada
 Postal Locator 0701E
 Ottawa, ON K1A 0K9

Postage paid labels, Canada Vigilance Reporting Form and the adverse reaction reporting guidelines are available on the MedEffectCanada Web site at www.healthcanada.gc.ca/medeffect.

NOTE: Should you require information related to the management of side effects, contact your health professional. The Canada Vigilance Program does not provide medical advice.
DRUG INTERACTIONS

Drug-Drug Interactions
There have been no reports of interactions of ketorolac tromethamine ophthalmic solution 0.5% with topical or injectable drugs used in ophthalmology pre-, intra-, or post-operatively, including antibiotics (e.g., gentamicin, tobramycin, neomycin, polymyxin), sedatives (e.g., diazepam, hydroxyzine, lorazepam, promethazine HCl), miotics, mydriatics, cycloplegics (e.g., acetylcholine, atropine, epinephrine, physostigmine, phenylephrine, timolol maleate), hyaluronidase, local anesthetics (e.g., bupivacaine HCl, cyclopentolate HCl, lidocaine HCl, tetracaine), or corticosteroids.

The potential for cross sensitivity to acetylsalicylic acid, and other NSAIDs exists. Ketorolac tromethamine ophthalmic solution therefore should be used with caution in patients who have previously exhibited sensitivities to these drugs.

Drug-Food Interactions
Interactions with food have not been established.

Drug-Herb Interactions
Interactions with herbal products have not been established.

Drug-Laboratory Interactions
Interactions with laboratory tests have not been established.

DOSAGE AND ADMINISTRATION

Dosing Considerations
There are no data specific for patients with hepatic or renal impairment and therefore specific dosage recommendations cannot be made.

Recommended Dose and Dosage Adjustment
The recommended dose of KETOROLAC (ketorolac tromethamine) ophthalmic solution 0.5% is one to two drops (0.25 mg to 0.5 mg) every six to eight hours beginning 24 hours before surgery and continuing for three to four weeks for prophylaxis and relief of post-operative ocular inflammation.

Missed Dose
NOTE: If you forget to apply your eye drops at your normal time, simply apply them as soon as you remember. Then go back to the original schedule as directed by your doctor. Don’t try to catch up on missed drops by applying more than one dose at a time.

Administration
KETOROLAC (ketorolac tromethamine) ophthalmic solution 0.5% is administered topically to the eye.

Patients should be instructed to avoid allowing the tip of the dispensing container to contact the eye, surrounding structures, fingers, or any other surface in order to avoid eye injury and contamination of the solution by common bacteria known to cause ocular infections.
KETOROLAC (ketorolac tromethamine) ophthalmic solution 0.5% should not be administered while wearing contact lens(es).

Contact lenses should be removed prior to instillation of ketorolac tromethamine ophthalmic solution and may be re-inserted 15 minutes following administration. Patients should be advised that KETOROLAC (ketorolac tromethamine) ophthalmic solution 0.5% contains benzalkonium chloride, which may discolor soft contact lenses (see WARNINGS and PRECAUTIONS, Ophthalmologic).

If more than one topical ophthalmic medication is being used, each one should be administered at least 5 minutes apart.

OVERDOSAGE

For management of suspected overdose, especially accidental oral ingestion, please contact your regional poison control centre immediately.

The absence of experience with acute overdosage systemically or topically precludes characterization of sequela and assessment of antidotal efficacy at this time. If ingested accidentally, drink fluids to dilute.

ACTION AND CLINICAL PHARMACOLOGY

Mechanism of Action
Ketorolac tromethamine is a non-steroidal, anti-inflammatory agent demonstrating analgesic and anti-inflammatory activity mediated by peripheral effects. Ketorolac inhibits the synthesis of prostaglandins through inhibition of the cyclo-oxygenase enzyme system. Prostaglandins play a critical role in many inflammatory processes of the eye and appear to play a role in the miotic response during ocular surgery. At concentrations of 0.02% to 0.5%, ketorolac tromethamine solution did not irritate the eyes of rats, dogs or monkeys. Up to 4.0% concentrations were non-irritating in albino rabbits.

Ketorolac tromethamine has demonstrated anti-inflammatory activity when applied topically in several animal models of ocular inflammation. The compound significantly inhibited the inflammatory responses to silver nitrate-induced cauterization of the corneas of rat eyes at concentrations of 0.25% and 0.5%. Concentrations of ketorolac ranging from 0.02% to 0.5% blocked vascular permeability changes caused by endotoxin-induced uveitis in the eyes of rabbits. Using the same model, ketorolac also blocked endotoxin-induced elevation of aqueous humor PGE2. It prevented the development of increased intraocular pressure induced in rabbits with topically applied arachidonic acid. Ketorolac did not inhibit rabbit lens aldose reductase in vitro.

Applications of a 0.5% ketorolac solution did not delay the healing of experimental corneal wounds in rabbits. This solution did not enhance the spread of experimental ocular infections induced in rabbits with Candida albicans, Herpes simplex virus type one, or Pseudomonas aeruginosa.
Pharmacodynamics
Ketorolac tromethamine given systemically does not cause pupil constriction. Results from clinical studies indicate that ketorolac tromethamine ophthalmic solution has no significant effect upon intraocular pressure, although changes in intraocular pressure may occur following refractive surgery.

Pharmacokinetics

Absorption: In human studies, penetration of the drug is rapid after application to the eye. The relationship between the concentrations of solution administered and the amount of drug that penetrates the cornea is roughly linear.

Two drops (0.1 mL) of 0.5% ketorolac tromethamine ophthalmic solution, instilled into the eyes of patients 12 hours and 1 hour prior to cataract extraction, achieved measurable levels in 8 of 9 patients’ eyes. The mean ketorolac concentration was 95 ng/mL in the aqueous humor and the range was 40 ng/mL to 170 ng/mL. The mean concentration of PGE2 was 80 pg/mL in the aqueous humor of eyes receiving vehicle and 28 pg/mL in the eyes receiving 0.5% ketorolac tromethamine ophthalmic solution.

One drop (0.05 mL) of 0.5% ketorolac tromethamine ophthalmic solution was instilled into one eye and one drop of the vehicle into the other eye t.i.d. for 21 days in 26 healthy subjects. Only 5 of 26 subjects had detectable amounts of ketorolac in their plasma (range 10.7 ng/mL and 22.5 ng/mL) when tested 15 minutes after the morning dose on day 10.

When ketorolac is given systemically to relieve pain, the average plasma level following chronic systemic treatment was approximately 850 ng/mL.

Distribution: Animal studies have shown that ¹⁴C-labelled ophthalmic solution 0.5% was found to be extensively distributed in ocular tissues with major portions retained in the cornea and sclera.

Metabolism: Although no studies have been conducted regarding the sites of metabolism for ophthalmic ketorolac, studies of systemic administration have shown that the drug is metabolized in the liver.

Excretion: Results of studies in rabbits and cynomolgus monkeys suggest that the major route of drug elimination from the eye is probably through intraocular blood flow after distribution from the aqueous humor to the iris-ciliary body.

STORAGE AND STABILITY

DOSAGE FORMS, COMPOSITION AND PACKAGING

KETOROLAC (ketorolac tromethamine, ophthalmic solution 0.5%), preserved, is supplied as a sterile ophthalmic solution in white opaque plastic multi-dose bottles of 5 mL or 10 mL with a controlled dropper tip.
Each mL of KETOROLAC ophthalmic solution 0.5% contains ketorolac tromethamine 5 mg, with the following non-medicinal ingredients: benzalkonium chloride 0.01% as the preservative; edetate disodium; octoxynol 40; sodium chloride; sodium hydroxide or hydrochloric acid solution to adjust pH; and water for injection.
PART II: SCIENTIFIC INFORMATION

PHARMACEUTICAL INFORMATION

Drug Substance

Proper name: ketorolac tromethamine (USAN)
ketorolac trometamol (BAN)
ketorolac (INN)

Chemical name: \((\pm)-5\text{-Benzoyl-2,3-dihydro-1H-pyrrolizine-1-carboxylic acid, 2-amino-2-(hydroxymethyl)-1,3-propanediol (1:1)}\)

Molecular formula: \(\text{C}_{19}\text{H}_{24}\text{N}_{2}\text{O}_{6}\)

Structural formula:

![Structural formula of ketorolac tromethamine](image)

Molecular weight: 376.41 g/mol

Physicochemical properties:
Ketorolac tromethamine (pKa = 3.46) is an off-white to white crystalline powder that melts at about 162°C with decomposition. It is freely soluble in water and methanol, slightly soluble in tetrahydrofuran, 190 proof and 200 proof ethanol and practically insoluble in acetone, dichloromethane, toluene, ethyl acetate, dioxane, hexane, butanol and acetonitrile. The pH of a 1% (w/v) solution in distilled water is 5.7 - 6.7.

CLINICAL TRIALS

Data is not available.

DETAILED PHARMACOLOGY

Animal Pharmacology
Several studies have been conducted in animals with ketorolac acid or ketorolac tromethamine solutions demonstrating: minimal eye irritation; anti-inflammatory activity in several models of ocular inflammation; prevention of arachidonic acid-induced increases in intraocular pressure with no effect on normal intraocular pressure; no impairment of corneal wound healing; no potentiation of ocular infections; and no effects on the proliferation of endothelial cells.
Metabolism and Pharmacokinetics

A series of studies were conducted with ophthalmic formulations of ketorolac acid and ketorolac tromethamine in rabbits and cynomolgus monkeys. Two different preservatives were used throughout these studies, namely a thimerosal (THIM) or a benzalkonium chloride (BAC) system. The benzalkonium chloride system was the final form selected for development due to its greater preservative efficacy and acceptability.

Single dose studies were performed using topical application, intracameral injection or intravenous administration in rabbits and/or cynomolgus monkeys. In the rabbit studies, topical doses of 0.5% ketorolac tromethamine were delivered via microliter syringe drop-wise onto the eye (50 µL (0.25 mg) per eye). Intracameral injections consisted of 20 µL (0.25 mg) of the dose solution injected directly into the anterior chamber. Intravenous doses were delivered via the marginal ear vein.

In those studies involving monkeys, the target dose for intravenous administration was 0.25 mg/kg. The topical ocular dose consisted of 100 µL per eye of 0.5% ketorolac tromethamine.

Ocular Absorption and Kinetics

Ocular absorption studies were conducted in female New Zealand white rabbits. Each topical formulation (50 µL, 0.25 mg), containing either BAC or THIM preservative systems, was applied to both eyes of six rabbits. An equivalent dose (0.25 mg per eye) was injected intracameraly to both eyes of six additional rabbits. The rabbits were kept anesthetized throughout the study.

Peak concentrations of 14C-ketorolac were 100-fold greater after intracameral injection compared with topical administration. The ocular absorption of the BAC formulation was 93% relative with the thimerosal formulation. The ocular bioavailability of the topical formulations averaged 4%.

After topical ocular doses, the half-life of total radioactivity in aqueous humor using the BAC formulation (3.8 to 6.4 hours) was longer than after intracameral injection (2.1 hours). This suggests that topical dosing may lead to a "reservoir" effect in the corneal epithelium and continued flux of drug from the reservoir into the aqueous humor. In the anterior chamber, clearance of 14C-ketorolac averaged 11 µL/min while the apparent volume of distribution averaged 1.93 mL.

Systemic Absorption

The extent of systemic absorption of the ocular dose in the rabbit was estimated using both plasma AUC and urinary excretion data. Plasma concentrations of total radioactivity and intact ketorolac were measured in the rabbit after topical (n=6), intracameral (n=6), and intravenous (n=3) administration of 14C-ketorolac tromethamine.

After a single ophthalmic dose (50 µL) in the rabbit, intact ketorolac was absorbed rapidly into the systemic circulation (Tmax, 15 minutes). The plasma half-life after ophthalmic doses (6.9 hours) was longer than after i.v. administration (1.1 hour), suggesting that removal of drug from the eye into the venous circulation may be rate-limiting. By comparison of drug levels in aqueous humor after intracameral injection vs. plasma levels after i.v. administration, ketorolac was shown to clear more rapidly in plasma (6 mL/min) than in the anterior chamber (11 µL/min).

In a study involving three cynomolgus monkeys, 14C-ketorolac tromethamine solution was administered intravenously and in a topical ocular solution. Peak plasma levels of ketorolac occurred at 1.1 hours after the ophthalmic dose. The plasma half-life of ketorolac was similar after ophthalmic (1.8 hours) and i.v. doses (1.6 hours).
The majority of the ophthalmic dose was excreted in urine (66% in rabbit (n=24) and 75% in monkey (n=3)) and a small amount in feces (11% in rabbit (n=24) and 2% in monkey (n=3)). The extent of systemic absorption based upon urinary data after ophthalmic dosing averaged 73% (n=3) and 74% (n=24) in rabbit and 76% (n=3) in the cynomolgus monkey. The systemic absorption estimated from the AUC data were 40% (n=3) and 64% (n=24) in rabbit and 73% in the cynomolgus monkey.

Concentrations of ketorolac tromethamine in aqueous humor and plasma were determined in a six-month ocular toxicity study in the cynomolgus monkey. Two drops (100 µL) per eye of the ophthalmic solution were applied 3, 6 and 9 times daily over 8 hours to groups of 12 cynomolgus monkeys. Plasma concentrations of ketorolac tromethamine were determined on day 1 and at the end of 3 and 6 months. Aqueous humor was also assayed at 3 and 6 months.

Concentrations of ketorolac in the aqueous humor confirmed drug absorption in the eye of monkeys and were directly proportional to the administered dose. Relative to the 3 times/day dose, concentrations of ketorolac in the aqueous humor after the 6 times and 9 times daily dose averaged 2.1 and 3.1 times higher, respectively, at the end of 3 months, and 1.8- and 2.7-fold higher levels respectively at the end of 6 months. A dose-proportional increase in plasma trough levels was demonstrated at the end of 6 months. Mean plasma levels of ketorolac were 2.2-fold and 3.3-fold higher after the 6 times and 9 times daily dose, respectively, compared with the 3 times daily dose. The results indicated that there was no accumulation of drug levels in aqueous humor and in plasma with repeated ophthalmic dosing.

In a similar study, two drops (100 µL) per eye of the ophthalmic solution were applied 3 or 9 times daily over 8 hours for one month to groups of four cynomolgus monkeys. Plasma concentrations were determined on day 1 and at the end of the study, and aqueous humor concentrations of ketorolac were measured at 1 month. Relative to the 3 times/day dose, concentrations of ketorolac in the aqueous humor after the 9 times/dose averaged 5.3-fold higher at the end of 1 month. Plasma levels at 1 month were 5-fold higher in the 9 times/day dose relative to the 3 times/day dose. The results of the one-month study also showed a low degree of systemic exposure and relatively higher levels in the aqueous humor compared to plasma levels of ketorolac.

Ocular Distribution

The intraocular distribution of 14C-ketorolac tromethamine was determined in the rabbit (n=24) after topical application of 50 µL of 0.5% 14C-ketorolac tromethamine optical solution containing benzalkonium chloride as the preservative. Peak concentrations of radioactivity were achieved within 1 hour in the ocular tissues and were highest in the cornea (6.06 µg-eg/mL). At 1 hour, the majority of the radioactivity (0.9% of administered dose) was recovered in the sclera (0.58%) and cornea (0.26%), vitreous humor (0.023%), retina-choroid (0.018%), iris-ciliary body (0.007%) and lens (0.002%).

Relative to plasma AUC values, the AUCs were higher for cornea (104-fold), sclera (27-fold), iris-ciliary body (5.8-fold), retina-choroid (5.6-fold), aqueous humor (3.3-fold) and approximately one-half in the vitreous humor and lens. When compared with an intravenous dose equivalent to twice the ophthalmic dose of 14C-ketorolac tromethamine administered via the marginal ear vein (n=3), concentrations of drug-related radioactivity were higher in the ocular tissues and lower in plasma after ophthalmic administrations.

Animal Metabolism

The metabolite profile in aqueous humor was determined in the rabbit, while plasma and urinary metabolite profiles were determined in both the rabbit and cynomolgus monkey after ophthalmic and i.v. dosing.
After ophthalmic administration in rabbits, ketorolac represented the major component (>90%) of radioactivity in aqueous humor and plasma and the p-hydroxy metabolite accounted for 5% of radioactivity in plasma. Ketorolac was also the major component (96%) of plasma radioactivity after ophthalmic dosing in monkeys (n=3).

After ophthalmic dosing in the rabbit, 72%, 17% and 6% of the total radioactivity in urine was comprised of intact ketorolac, p-hydroxy ketorolac and other polar metabolites. After i.v. dosing, the relative proportions of total radioactivity averaged 6% as intact ketorolac, 68% as p-hydroxy ketorolac, and ~ 22% as polar metabolites.

In the monkey, intact ketorolac and its polar metabolite (possibly the glucuronide conjugate of ketorolac) accounted for 32% and 65% of the total radioactivity in urine, respectively, after ophthalmic dosing, and 50% and 49% of the radioactivity in urine, respectively, after i.v. dosing. Thus, the metabolism of ketorolac was qualitatively very similar after ophthalmic and i.v. administration in the monkey.

Clinical Studies

Pharmacokinetics

The penetration of ketorolac ophthalmic solution into the anterior chamber of the eye was studied in patients undergoing unilateral cataract extraction with intra-ocular lens implantation. The average concentration of ketorolac in the aqueous humor was 95 ng/mL following the instillation of two drops of the 0.5% solution approximately 12 hours and 1 hour before surgery. The concentration of ketorolac in the aqueous humor was below the detection limit of the assay (40 ng/mL) when 2 drops of 0.1% solution were instilled into the eyes of another group of patients undergoing the same surgical procedure.

Concentrations of PGE2 in the aqueous humor were depressed following the instillation of both the 0.1% and 0.5% ketorolac solutions. However, compared to the vehicle-treated group, the depression of PGE was not statistically significant.

In a 21-day multiple (t.i.d.) dose study in healthy volunteers, five of the 26 subjects had detectable (>10 ng/mL) plasma levels of ketorolac (11 ng/mL to 22 ng/mL) following 10 days of instillation of one 0.5% ketorolac ophthalmic solution. One subject had detectable levels before the first morning dose on Day 10 and the other four subjects had detectable levels when tested 15 minutes after the morning dose on Day 10. None of the volunteers had detectable levels on Day 24, three days after the end of dosing.

To put these plasma levels into perspective, when 10 mg of ketorolac was given a single intramuscular or oral dose or as multiple doses, the plasma level of ketorolac was approximately 850 mg/mL 30 minutes after dosing.
TOXICOLOGY

Acute Toxicity

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>Regimen</th>
<th>Group Size</th>
<th>Preservative</th>
<th>Route Concentration* (mg/mL)</th>
<th>Mortality</th>
<th>Clinical Ophthalmology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit</td>
<td>New Zealand</td>
<td>One dose in right eye followed by a 72-hour observation</td>
<td>3 females</td>
<td>0.01% BAC</td>
<td>Ocular</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td>0/3</td>
<td>NDE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
<td>0/3</td>
<td>NDE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0</td>
<td>0/3</td>
<td>NDE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.0</td>
<td>0/3</td>
<td>NDE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.0</td>
<td>0/3</td>
<td>NDE</td>
</tr>
<tr>
<td>Rabbit</td>
<td>New Zealand</td>
<td>One dose every one-half hour for a total of 12 doses to both eyes.</td>
<td>6 males</td>
<td>0.01% BAC</td>
<td>Ocular</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eyes were examined after the last dose and on days 1, 2, 3 and 6</td>
<td></td>
<td></td>
<td>Saline control and vehicle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>following dosing</td>
<td></td>
<td></td>
<td>control 5.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Volume = 0.1 mL/eye
NDE: No drug effect (no indications of irritation or toxicity)
BAC: Benzalkonium chloride

Long-term Toxicity

Ketorolac ophthalmic solution was evaluated in rabbits (pigmented and non-pigmented) in studies up to 6 weeks, and in monkeys in studies lasting up to 12 months.

The results of the pre-clinical toxicology studies indicate no adverse drug-related effects to ketorolac tromethamine. No adverse effects were observed in monkeys following 6 months of treatment with a thimerosal-preserved formulation. However, in studies with the BAC (benzalkonium chloride) formulation, corneal fluorescein staining, accompanied by thinning of the epithelium, was seen in vehicle-treated and drug-treated animals. The Dutch Belted rabbit was most sensitive to these effects, with the New Zealand rabbit and the monkey showing decreasing sensitivities. Since the effects were seen primarily in vehicle and low-dose groups and since similar effects have been reported for BAC, the corneal changes were attributed to the preservative. The difference in sensitivity shown by the rabbit compared to the primate may be explained physiologically because of the greater blinking rate and lacrimal response to irritation in primates, including humans. In fact, formulations containing 0.01% BAC are well tolerated by humans and are approved as over-the-counter ophthalmic medications.
REFERENCES

9. Product Monograph – ACULAR® (ketorolac tromethamine) ophthalmic solution 0.5% w/v with benzalkonium chloride 0.01% w/v as preservative and ACULAR LS® (ketorolac tromethamine) ophthalmic solution 0.4% w/v with benzalkonium chloride 0.006% w/v as preservative. Allergan Inc. Date of Revision: July 24, 2014.
PART III: CONSUMER INFORMATION

KETOROLAC
Ketorolac Tromethamine Ophthalmic Solution
0.5% w/v

This leaflet is part III of a three-part “Product Monograph” published when *KETOROLAC* was approved for sale in Canada and is designed specifically for Consumers. This leaflet is a summary and will not tell you everything about *KETOROLAC*. Contact your doctor or pharmacist if you have any questions about the drug.

ABOUT THIS MEDICATION

What the medication is used for:
KETOROLAC eye drops are used to prevent and lessen eye inflammation in patients undergoing cataract extraction with or without implantation of an intraocular lens.

What it does:
KETOROLAC is a preserved eye drop solution that belongs to a family of drugs known as non-steroidal anti-inflammatory drugs (NSAIDs). These drugs reduce the production of certain substances (called prostaglandins) that the body normally produces to help control such functions as muscle contraction, inflammation, and numerous other body processes, and that is why they are also called anti-prostaglandin drugs.

Clinical studies indicate that when prostaglandin levels are reduced, the intensity of pain and inflammation is reduced as well.

When it should not be used:
Do not use *KETOROLAC*:
- If you are allergic to ketorolac tromethamine or any of the other ingredients (see what the non-medicinal ingredients are).

What the medicinal ingredient is:
Ketorolac tromethamine

What the non-medicinal ingredients are:
Benzalkonium chloride 0.01% w/v as the preservative, edetate disodium, octoxynol 40, sodium chloride, sodium hydroxide or hydrochloric acid solution to adjust pH, and water for injection.

What dosage forms it comes in:
KETOROLAC (ketorolac tromethamine) ophthalmic solution 0.5% w/v

WARNINGS AND PRECAUTIONS

KETOROLAC may cause transient blurred vision. Do not drive or use heavy machinery until your vision clears.

BEFORE you use *KETOROLAC*, talk to your doctor or pharmacist if:
- you are allergic to acetylsalicylic acid (e.g. Aspirin®) or to any of the other non-steroidal anti-inflammatory drugs (see Interactions with this medication).
- you have a past medical history of asthma which may have been related to the use of *KETOROLAC*
- you have ever had any unusual or allergic reaction to *KETOROLAC*
- you are allergic to any substance. Most medicines contain more than their active ingredient. Your doctor, nurse or pharmacist can help you avoid products that may cause a problem.
- you are pregnant or intend to become pregnant. *KETOROLAC* is not recommended in pregnancy.
- breast-feeding, or intend to be breast-feeding. *KETOROLAC* is not recommended in nursing mothers.
- you have any medical problems.
- you have had recent eye surgery or are planning for eye surgery.
- you have other serious eye conditions including corneal thinning, corneal ulceration, corneal perforation, keratitis.
- you have bleeding problems, as *KETOROLAC* may cause bleeding in the eyes when associated with eye surgery.
- you are taking any other prescription or nonprescription (over-the-counter (OTC)) medicine.

INTERACTIONS WITH THIS MEDICATION

Drug interactions studies have not been done for *KETOROLAC*.

Drugs that may interact with *KETOROLAC* include:
- If you have had a previous sensitivity to acetylsalicylic acid (e.g. Aspirin®) and other non-steroidal anti-inflammatory (NSAIDs) (e.g. diclofenac, diflunisal, fenoprofen, flurbiprofen, ibuprofen, indomethacin, ketoprofen, mefenamic acid, piroxicam, sulindac, tiaprofenic acid, tolmetin), taking *KETOROLAC* may reactivate these reactions. If you have this sensitivity, it is recommended that you not use other NSAIDs while taking *KETOROLAC*.
PROPER USE OF THIS MEDICATION

Usual adult dose:

Normally, you should put one to two drops of KETOROLAC in each eye that needs treatment, three or four times every day, depending on the directions your doctor has given you.

KETOROLAC should only be applied to the eye.

You must not use the bottle if the tamper-proof seal on the bottle neck is broken before you first use it.

Follow the following steps to help you use KETOROLAC properly:

1. Before using the medication for the first time, be sure the sealing tape on the bottle is unbroken (Fig.1).

![Fig.1](image)

2. To open the bottle, unscrew the cap by turning as indicated by the arrow (Fig.2).

![Fig.2](image)

3. Wash your hands. Tilt your head back and look at the ceiling. With clean hands, gently pull your lower eyelid down slightly to create a small pocket between your eyelid and your eye (Fig.3).

![Fig.3](image)

4. Turn the bottle upside down and squeeze it gently to release one drop into each eye that needs treatment (Fig. 4).

![Fig.4](image)

DO NOT TOUCH YOUR EYE OR EYELID WITH THE DROPPER TIP.

If a drop misses your eye, try again.

5. Let go of the lower lid, and close your eye for 30 seconds. Do not blink.

Immediately after applying the eye drops, wash your hands to remove any medicine that may be on them.

6. Repeat steps 3, 4 and 5 with the other eye if instructed to do so by your doctor.

7. Replace the cap by turning until it is firmly touching the bottle. Do not over tighten the cap.

Contact lenses should be removed prior to instillation of KETOROLAC and may be re-inserted 15 minutes following administration. KETOROLAC contains benzalkonium chloride, which may discolor soft contact lenses.

Always use KETOROLAC exactly as your doctor has instructed you. If you use KETOROLAC with another eye drop, leave at least five minutes between putting in KETOROLAC and then the other drops.

To help prevent infections, do not let the tip of the bottle touch your eye or anything else. Put the cap back on and close the bottle immediately after you have used it.

Ophthalmic medications, if handled improperly, can become contaminated by common bacteria known to cause eye infections. Serious damage to the eye and subsequent loss of vision may result from using contaminated ophthalmic medications. If you think your medication may be contaminated, or if you develop an eye infection, contact your doctor immediately concerning continued use of this bottle.
Overdose:

In case of overdose, especially accidental oral ingestion, contact your healthcare practitioner (e.g. doctor), hospital emergency department, or regional poison control centre, even if there are no symptoms.

There is not enough information on severe overdose to determine if there would be any consequences, and if there is a medicine that can be taken to reverse the effect at this time. If ingested accidentally, drink a lot of fluids.

If you accidentally use too many drops, just go back to your regular dosing the next day. If you have any concerns, talk to your doctor or pharmacist.

Missed Dose:

If you forget to apply KETOROLAC at your normal time, simply apply it as soon as you remember, and then go back to your regular routine. Do not take two doses to make up for the one that you missed.

SIDE EFFECTS AND WHAT TO DO ABOUT THEM

<table>
<thead>
<tr>
<th>Very common</th>
<th>Occurs in more than 1 out of 10 patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common</td>
<td>Occurs in between 1 and 10 out of every 100 patients</td>
</tr>
<tr>
<td>Uncommon</td>
<td>Occurs in between 1 and 10 out of every 1,000 patients</td>
</tr>
</tbody>
</table>

Along with its needed effects, a medicine may cause some unwanted effects. If these persist or cause you concern, consult your doctor.

Common with KETOROLAC:

- Irritation of the eye (stinging, burning, redness)
- Itchy and/or swollen eye
- Blurred vision after instillation of the eye drops
- Eye pain
- Conjunctivitis (pink eye)

This is not a complete list of side effects. For any unexpected effects while taking KETOROLAC, contact your doctor or pharmacist.

SERIOUS SIDE EFFECTS, HOW OFTEN THEY HAPPEN AND WHAT TO DO ABOUT THEM

<table>
<thead>
<tr>
<th>Symptom / effect</th>
<th>Talk to your healthcare professional</th>
<th>Stop taking drug and seek immediate emergency medical attention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common</td>
<td>Only if severe</td>
<td>In all cases</td>
</tr>
</tbody>
</table>

SERIOUS SIDE EFFECTS, HOW OFTEN THEY HAPPEN AND WHAT TO DO ABOUT THEM

<table>
<thead>
<tr>
<th>Symptom / effect</th>
<th>Talk to your healthcare professional</th>
<th>Stop taking drug and seek immediate emergency medical attention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common</td>
<td>Only if severe</td>
<td>In all cases</td>
</tr>
</tbody>
</table>

If you have a troublesome symptom or side effect that is not listed here or becomes bad enough to interfere with your daily activities, talk to your healthcare professional.

HOW TO STORE IT

Keep out of reach and sight of children.

Reporting Side Effects

You can help improve the safe use of health products for Canadians by reporting serious and unexpected side effects to Health Canada. Your report may help to identify new side effects and change the product safety information.

3 ways to report:

- Online at MedEffect (http://hc-sc.gc.ca/dhp-mps/medeff/index-eng.php);
- By calling 1-866-234-2345 (toll-free);
- By completing a Consumer Side Effect Reporting Form and sending it by:
 - Fax to 1-866-678-6789 (toll-free), or
 - Mail to: Canada Vigilance Program Health Canada, Postal Locator 0701E Ottawa, Ontario K1A 0K9

NOTE: Contact your health professional if you need information about how to manage your side effects. The Canada Vigilance Program does not provide medical advice.

MORE INFORMATION

For more information, please contact your doctor, pharmacist or other healthcare professional.

This leaflet plus the full product monograph, prepared for health professionals, can be obtained by contacting DISpedia, Apotex’s Drug Information Service at:

1-800-667-4708

This leaflet can also be found at:

This leaflet was prepared by Apotex Inc., Toronto, Ontario, M9L 1T9.

Last revised: June 16, 2015